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Results obtained in [l] are extended to nonautonomous systems and a wider class 
of nonlinearities. The question of application of the Liapunov vector function is 

considered. 

1. Let us consider the system of differential equations of perturbed motion 

y’ = Q (t) x + R 0) Y + y” (h Y> + y (6 x7 Y) (1.1) 

x’= ~(t)x+X(t, x, y), XER’~ YER’ 
where P, Q and R are continuous and bounded for t > 0 matrices of corresponding 
order and functions Y, and X satisfy conditions 

Y(t, 0, y)=O, X(4 0, y)=O (1.2) 

IIY(~~x~~~Il+IIX(t~x~ Y)II -0 
II x II 

for jlxll+[lyjl-tO 
-4 (1.3) 
t>o 

We assume that solutions of the linear system 

satisfy the condition 
x*’ = P(t)x* (1.4) 

[I X* (t; to, x0*) 116 B 11 x0* 11 e-a(*-~o) (R > 0, u > 0-const ; i > to > 0) (1,5) 

Let us consider the system 

y*’ = R(t) y* + Y” (t, y*) (1.6) 

which is obtained from the first group of Eqs. (1.1) for x = 0 whose solutions are deno- 
ted by y* (t; to, yo*). The variational equations for system (l.S)are of the form 
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E’ = [R ct) + aY;$ y*) Iy*_Y.(f. to “o*)] k 
9 9. 

(1.7) 

We denote by Q (t; t,,, yo*) the fundamental matrix of solutions of system (1.7) ; 
we have 52 (4,; to, yo*) = E, where E is the unit matrix, and Q (t; t,, y,,*) = 

dy” (t; to, Yo*) / dYiJ”* 

2. Theorem 1. Let us assume that 
1) the zero solution of system (1.4) is exponentially asymptotically stable (see 

(1.5)); 
2) the zero solution of system (1.6) is uniformly stable relative to t,, and 
3) there exist constants h > 0 and N > 0 such that for t, > 0 and /I yO*(j < h 

we have 
(2.1) 

The unperturbed motion )I x 11 = 11 y 11 = 0 of system (1.1) is then Liapunov-stable, 
and exponentially asymptotically x-stable for any functions Y and X that satisfy con- 

ditions (1. 2) and (1.3). 

Proof. As shown in [2], condition (1.5) implies the existence of a positive definite 
quadratic form V (t, X) with bounded coefficients, which satisfies the equation 

iJ‘V (4 x) / ~2 + grad, V (t, x).P (t)x = - 11 x 11 2 

The second group of Eqs. (1.1) implies that the derivative of function V 

V’ (t, x, y) = - II x II2 $- grad, V (t, x).X (t, x, y) 

According to (1.3) there exists such p, 0 < b < h, that in the region 

the inequality 

is satisfied. 
v*(G x9 y)\< - c1l,x//” 

Let us consider the arbitrary solution x (t; to, 

(1.1) with initial conditions in the region 

IIYll~P 

(cl = const > 0) 

is of the form 

(2.2) 

(2.3) 

(2.4) 

x0, Yo), Y (t; to, x0, yo) of system 

to > 07 II x0 II-C 69 II Yo II< 69 6 c /3 (2.5) 

That solution satisfies conditions 

)jx(t; to, x09 Yo)II\(i3, IlY (t; to, x09 Yo)II\<P (2.6) 

at least in some interval (to, T). Hence, by virtue of (2.4) we have [3] 

jlx(t; to7 x0, Yo) II-\< C2 II~o/le-Y+fo) for t E (to, I’) (cz_>o, *I>O-CoWi) (2.7) 

Condition (1.3) and the inequality (2.7) yield the estimate 

1 Y (t, x (t; to, x0, y0), y (t; to, x0, yo)) / < cs (1 x0 !I e-Y(t-fo) (2.8) 

t E (to, T), c.? = const > 0 

Function y (t; to, x0, yo) which satisfies the system of equations 

y’ = R(t) y + Y”(t, y) + Q (t)x(t; to, x07 YO) + 

Y (t, x (1; to, xor yo), y (t; to, x07 Yo)) 
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can be represented by the formula [4] 

Y 0; lo* x0* Yo) = y* (C to, yo>:+ $ Q (1; r, y (T to, X0? Yo)) x 

By stipulation 
1 Q (1) [ < M = const for t > 0 (2.10) 

Using (2. ‘I), (2.8),(2.10) and condition (3) of the theorem, for t E (to, 2’) from 
(2.9) we obtain 

(2.11) 

Let E be an arbitrarily small number, 0 < E < p. We set 6 (E) > 0 in (2.5) suf- 

ficiently small to have the inequalities 

6 < r/sc& cI = m in (I$, TN-’ (MC, + cg)-1) (2.12) 

11 V* (1; to, yn)il< ‘/zE for t > t,. to > 0 (2.13) 

satisfied (the latter is possible by virtue of condition (2) of the theorem). Then from 

(2.7) and (2. ll) it follows that for t E (fo, T) : 

[x (t; to. x0, yoj 1) < Ee-‘(‘-‘*), II y (t; t,. x0, yo) I< e (2.14) 

Thus the inequalities (2.14) are valid throughout the time interval during which con- 

ditions (2.6) are satisfied. Since e ( p, the inequalities (2.14) are valid for aII t > 
to. The theorem is proved. 

N o t e . The above proof shows that condition (3) of Theorem 1 ensures the uniform 
stability of the zero solution of system (1.6) with respect to t, in the case of constantly 

acting perturbations r (t, y) which in region t > to, 1 y n < 8 > 0 satisfy the inequal- 

ity II r (t, y) II < 6 exp I- y (t - t,)], where 6 > o is arbitrarily small and y=conat>(). 

8, Condition (3) of Theorem 1 is difficult to prove. It is possible to dispense with 
that condition. 

Theorem 2. Let us assume that: 

1) the zero solution of system (1.4) is exponentially asymptoticaIIy stable ; 
2) the zero solution of the system 

y*’ - H (t)y* (3.1) 

is uniformly stable with respect to to, and 

3) function Y” (t, y) satisfies conditions oD 

IP% ~)Il\<cp(W~ll~ \ (~(t)dt = 0-C 00 (3.2) 
0 

The unperturbed motion of system (1.1) is then by Liapunov uniformly stable and ex- 
ponentially asymptotically x-stable for any functions Y and X that satisfy conditions 

(1.2) and (1.3). 
Proof. The initial part of the. proof of Theorem 1 up to and including the estimate 

(2.8) remains in this case unchanged. Function y (t; to, x0, y,), considered as the 
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solution of system 

Y’ = K (0 Y + yc (/? Y (1; 201 x0, y0)) + Q (Q x (t; to, x0, yo) -t 
y (tt x (i; lo* SOI yo), y (C to, x0, yo)) 

can be represented by the Cauchy formula [5] 
t 

y (C to, x0> yo) = Q (t; to) yo + 1 Q (t; z) [Y” (c y (c to, x0, yo))+ (3.3) 

Q (‘t) x (z; to, x0, yo) + Y (cloy (T to, x0, YO)? y (? to, x09 Yo))l df 

where 9 (t; to) is the fundamental matrix of the solution of system (3. l), and 52 (to; 

to) = E. Condition (2) of the theorem is equivalent to the inequality [5] 

llQ(C to>jJ\(N = cmst for t > to, to > 0 (3.4) 

Using (3.4),(3.2), (2. ‘7),(2.8) and (2. lo), from (3.3) we have 

IlY 0; to7 X01 Yo)llG~llYoll+;Y) (PWIlY(“i to, x0, yo)p+ 
0 

N WC2 + 4 (I x011 j e-Y(+Wd~ < N 11) y. IIf (MC,+ 4 7-l (I x0 III f 
0 

iv 1 cp (~1 IJY (7; to, x07 YO) (I dzv t E (tot T) 
to 

Applying to the last inequality the Gronwall-Bellman lemma [S, 61 and taking into 

account (3.2), we obtain 

II Y (2; to, x09 YO) II < N Ill YO II + WCS + 4 7-l II xo II I x 

exp[Pi ‘P(~)~~]~~[~IYO//+(~~~+~~)~~~~I~~~/~~~~ 
to 

The proof is completed similarly to that of Theorem 1. 

Note. The uniform stability of the zero solution of system (1.6) follows from con- 

ditions (2) and (3) of Theorem 2. It is proved similarly to the foregoing with the use of 

the Cauchy formula and the Gronwall-Bellman lemma. 
Let Y” (t, y) c 0; for which systems (1.6) and (1.1) assume, respectively, the form 

(3.1) and 
y’=Q(t)x+X(t)y+Y(t,x,y), x-=P(t)x+X(t,x,y) (3.5) 

The following theorem results from Theorem 2 for cp (t) = 0 . 
Theorem 3. Let us assume that the zero solution of system (1.4) is exponentially 

asymptotically stable and the zero solution of system (3.1) is uniformly stable with.re- 
spect to to. Then the unperturbed motion of system (3.5) is uniformly Liapunov-stable 
and exponentially asymptotically x-stable for any functions Y and X that satisfy con- 

ditions (1.2) and (1.3). 
N o t e . (1) Theorem 3 ceases to be valid when the stability of the zero solution of 

system (3.1) is nonuniform with respect to t,, as shown by the example constructed by 
Perron [Z, 61. 

2) When matrices P, Q and R are constant, Theorem 3 is the same as Theorem 1 



Stability of unsteady motions in first approximation 389 

in [l]. 
It is possible to disregard condition (3) of Theorem 1, when the uniform stability of 

the zero solution of system (1.6) (see condition (2) of Theorem 1) is established by means 

of the Liapunov function with suitable properties. 

LetoandgbevectocsinthespaceRm. Fo~w~\($~(i=l, . . ..m)wehave 

0 < 4. 
Let us assume that there exists a vector function v (t, y*) = (ul (t, y *), . . . , 

v, (t, y*)) such that: 

1) v and the derivative I-’ are continuous by virtue of system (1.6) and v (t, 
0) S v’ it, 0) EE 0; 

2) for some 1, 1 < 1 < m, v1 > 0, . . ., V, > 0 and 

Vl (G y*) $ . . . + u1 ct, ;y”) ‘2 a (11 y* 1)) 

where a (r) is a continious monotonically increasing function and a (0) = 0; 
3) the partial derivatives &-;dy* satisfy conditions 

II fh / 8Y” II < cp (t) (3.6) 
00 

s cp (t) e-Y(‘-Wt < D = CCUIS~ for all t, > 0 (3.7) 
to 

4) the derivative v’ satisfies by virtue of (1.6) the inequality 

v’(t, y*) < f (t, v (t, y*)) (3.6) 

5) the vector function f (t, v). is determinate and continuous in the region 

t>oo, Ijvll<R, v,ao,. . . V[ >o (3.9) 

where R = 00 or R > s!lp [I) Y (t, y*) 11 : t > 0, /) y* /I < HI; 
6) because V* < y** we have f (t, v*) < f (t, v**) in region (3.9) and, 

furthermore, f (t, 0) 5 0; 

7) for ijy*ji-+O V (t, y*) -+ 0 uniformly with respect to t > 0. Let us con- 

sider the system of matching 
c’ = f (t, 0) (3.10) 

using the notation a = (ol, . . ., co!). 
Theorem 4. Let us assume that the zero solution of system (1.4) is exponentially 

asymptotically stable and that there exists a vector function v (t, y*) which satisfies 
conditions (1) - (7). If the zero solution of system (3.10) is uniformly n-stable with 

respect to t, when the conditions o10 > 0, . . ., oLo > 0 are satisfied, then the un- 
perturbed motion of system (1.1) is uniformly Liapunov-stable and exponentially asymp- 
totically x-stable for any functions Y and X that satisfy conditions (1.2) and (1.3). 

PC o o f . The initial part of the proof of Theorem 1 up to and including the estimate 
(2.8) remains in this case unchanged. By virtue of (3.8),(3.6), (2.5), (2.7),(2.8) and 
(2.10) the derivative dv (t, y (t; t,, x0, y,,))/dt satisfies the inequality 

dv (t, y (t; to, x0, yo)) / dt < f (t, v (t, y (t; to7 x07 Yo))) + 
cp (t) e-Y(*-‘o) (Mcz + cg) 6b, t E (to, T) 

where b = (1, . . ., 1). Let us consider the system of matching 

(3.11) 
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to*’ = f (t, co*) + cp (t)e-Y(t-WGb, H = MC, + c3 (3.12) 

which corresponds to inequality (3.11). 

We denote the solutions of systems (3.10) and (3.12) by o (t; t,, a,,) and o* (t; 
lo, @,I*), respectively,and show that the inequality 

o” (t; t,,, 00) <o(t; to, 0, + HDGb) (3.13) 

is satisfied in every interval (to, z), in which the solutions that appear in (3.13) are 

determinate. Let us assume the contrary, i.e. that the relationship 

a* (t; to, 00) < 0 (t; to, 00 + HDGb), t E (to, h> c (to, 4 (3.14) 

is valid and that for some i 

ai* (t,; toy ~0) = Oi (t,; to, 00 + HDGb) (3.15) 

From (3.12), (3.14),(3.7) and the property (6) we obtain 

o* (tl; to, oo) = o,+ 5 f (t, co* (t; to, coo)) dt+ H6b t cp (t) e-‘(‘-‘0) dt < 
0 lo 

tt 

coo + HDSb + 5 f (t, o(t; to, coo+ HDGb))dt= o(tl; to, o,+HDSb) 
to 

which contradicts equality (3.15). Inequality (3.13) is thus proved. 

Let an arbitrary E, 0 < E < fi be specified (see (2.3)). By stipulation there exists 

h (E) > 0 such that for olo > 0, . . ., alo > 0 from 
m 

2 1 @so I < h (3. 16) 

follows 
s=1 

1 

2 1 w, (t; to, 00) 1 <a (8) for t > &v to > 0 (3.17) 
s=1 

Using the number h (E) it is possible by virtue of property (7) to select 6 (1” (e)) = 
6 (E) > 0 such that the inequality 

II v (tot Y o> II + HD6 II b II -c h (3.18) 

is satisfied in region (2.5). 
Considering that condition (6) is stronger than that of Wazewski [7] and taking into 

account inequality (3.13), it can be readily shown, as in [8], that for t E (to, I’) from 

(2.5) we obtain I( y (t;, to, x0, yo) 11 < E , Assuming that 6 < cz-%, we find from( 2.7) 

that throughout the time interval during which conditions (2.6) are satisfied, the inequal- 
ities(2.14) are valid. Since E< p, the inequalities(2.14) are valid for all t > to, Q. E. D. 

Notes. (1) In the particular case of m = 1, fl - 0 and cp (t) = 1v = const from 
Theorem 4 we obtain the theorem of Dykhman [9]. We note in connection with this that 
in the general case of uniform stability it is not possible to prove the existence of a po- 
sitive definite function u with a constantly negative derivative v’, which has bounded 
derivatives au J ayi. 

2) It is possible to waive in Theorem 4 the smoothness of function v by substituting 
the weaker condition 
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II v (h y *I - v 0, Y **I II d cp (4 II Y * - y ** 11 

for condition (3.6). In that case v’ is to be taken as the generalized derivative (see,e. g., 

c5, 10, 111). 

4, Let us consider the problem of instability. 

Theorem 5. let us assume that the zero solution of system (1.6) is unstable. Then 

the unperturbed motion of system (1.1) is y-unstable for any functions Y and X that 

satisfy condition (1.2). 

Proof of this theorem is similar to that of Theorem 2 in Cl]. 

The author thanks V. V. Rumiantsev for his interest in this work. 
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